
Package: GenomeAdmixR (via r-universe)
October 10, 2024

Type Package

Title Simulate Admixture of Genomes

Version 2.1.8

Description Individual-based simulations forward in time, simulating
how patterns in ancestry along the genome change after
admixture. Full description can be found in Janzen (2021)
<doi:10.1111/2041-210X.13612>.

License GPL (>= 2)

URL https://github.com/thijsjanzen/GenomeAdmixR

BugReports https://github.com/thijsjanzen/GenomeAdmixR/issues

Imports ggplot2, ggridges, hierfstat, Rcpp, RcppParallel, rlang,
stringr, tibble, vcfR

Suggests dplyr, junctions, knitr, magrittr, rmarkdown, testit,
testthat, pbapply

LinkingTo Rcpp, RcppArmadillo, RcppParallel

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.1

SystemRequirements C++14

Depends R (>= 2.10)

Repository https://thijsjanzen.r-universe.dev

RemoteUrl https://github.com/thijsjanzen/genomeadmixr

RemoteRef HEAD

RemoteSha e4269d1f1a2803acff9ce1aa00367780f9972ddb

Contents
GenomeAdmixR-package . 3
ancestry_module . 5

1

https://doi.org/10.1111/2041-210X.13612
https://github.com/thijsjanzen/GenomeAdmixR
https://github.com/thijsjanzen/GenomeAdmixR/issues

2 Contents

calculate_allele_frequencies . 6
calculate_average_ld . 7
calculate_dist_junctions . 7
calculate_fst . 8
calculate_heterozygosity . 9
calculate_ld . 9
calculate_marker_frequency . 10
combine_input_data . 11
create_artificial_genomeadmixr_data . 12
create_iso_female . 12
dgrp2.3R.5k.data . 13
iso_female_ancestry . 14
iso_female_sequence . 15
load_population . 16
migration_settings . 17
plink_to_genomeadmixr_data . 18
plot.individual . 18
plot_chromosome . 19
plot_difference_frequencies . 20
plot_dist_junctions . 21
plot_frequencies . 21
plot_joyplot_frequencies . 22
plot_over_time . 23
plot_start_end . 24
print.genomeadmixr_data . 25
print.individual . 26
print.population . 26
read_input_data . 27
save_population . 28
sequence_module . 28
simulate_admixture . 29
simulate_ancestry . 31
simulate_ancestry_migration . 32
simulate_sequence . 34
simulate_sequence_migration . 36
simulation_data_to_genomeadmixr_data . 38
vcfR_to_genomeadmixr_data . 39
write_as_plink . 39

Index 41

GenomeAdmixR-package 3

GenomeAdmixR-package Simulate Admixture of Genomes

Description

Individual-based simulations forward in time, simulating how patterns in ancestry along the genome
change after admixture. The simulation assumes Wright-Fisher dynamics, e.g. random mating and
non-overlapping generations. In the simulation, instead of specific alleles, local ancestry is tracked,
thus assuming that local molecular data can always be uniquely traced back to one of the founding
individuals (populations). The package provides functionality to perform such simulations, but also
to perform post-hoc statistical analyses and to visualize the obtained results.

Version 2.1.7 - Improve documentation
Version 2.1.6 - check classes with inherits
Version 2.1.5 - Removed debugging output
Version 2.1.4 - Only output when verbose = TRUE
Version 2.1.3 - Changed DOI link in description
Version 2.1.2 - Improved testing
Version 2.1.1 - Removed GNU make dependency
Version 2.1 - Removed error in calculate_allele_frequency
Version 2.0.1 - Moved migration outside the modules
Version 2.0 - Added ancestry_module and sequence_module to distinguish between implementa-
tions of the model
Version 1.2 - Added example sequencing data
Version 1.2 - Added the option to load sequence data for admixing
Version 1.1 - Fixed a minor bug with plot_joyplot_frequencies
Version 1.1 - Improved tests
Version 1.1 - Improved recombination code (again)
Version 1.0 - Release associated with bioRxiv submission, to be found here: https://doi.org/10.1101/2020.10.19.343491
Version 0.66 - Improved recombination code, about twice as fast
Version 0.65 - Added testing and added logo
Version 0.64 - Reduced cyclomatic complexity
Version 0.63 - Updated random number generation
Version 0.62 - Updated to Roxygen
Version 0.61 - Added plot_over_time
Version 0.60 - Added admixture with migration
Version 0.59 - Updated frequency code under the hood
Version 0.58 - Renamed to GenomeAdmixR
Version 0.58 - Collapsed and improved many functions
Version 0.57 - Added function to generate admixed individuals
Version 0.56 - Added starting frequencies to ’simulate_admixture’
Version 0.55 - Extended ’calculate_marker_frequency’ to handle a vector of locations
Version 0.55 - Increased accuracy of choosing a random position for recombination, this should
prevent the rare bug fixed in version 0.54
Version 0.54 - Fixed a MAJOR bug regarding recombination: in rare cases, a crossover position
could be picked on an existing junction, due to the limited number of digits in uniform()
Version 0.54 - Improved plot_difference_frequencies to handle modified input

4 GenomeAdmixR-package

Version 0.53 - Added multiplicative_selection
Version 0.52 - Added plot_difference_frequencies
Version 0.51 - Added tajima’s d calculation
Version 0.50 - Added simulated_admixture until
Version 0.49 - Added ’simulate’ to cpp
Version 0.48 - Added a general ’simulate’ function
Version 0.47 - Changed the effect of migration
Version 0.46 - Added joyplot & increase_ancestor
Version 0.45 - Removed create_two_populations
Version 0.44 - Added tracking regions
Version 0.43 - Fixed bugs in select_population
Version 0.42 - Added initial and final frequency tables
Version 0.41 - Added multiple marker support
Version 0.40 - Collapsed selection functions
Version 0.39 - Added support for non-additive selection
Version 0.38 - Added track frequencies
Version 0.37 - Removed selection on regions
Version 0.36 - Added progress_bar option
Version 0.35 - Added calculate_marker_frequency
Version 0.34 - Added selection_markers
Version 0.33 - Fixed bugs in selection
Version 0.32 - Moved Fish.h code to Fish.cpp
Version 0.31 - Changed random number generator to R based
Version 0.30 - Added Recombination = 1 code
Version 0.29 - Changed internal junction representation: removed .left
Version 0.28 - Reverted to Agner Fog Random number generation
Version 0.27 - Speed up return types
Version 0.26 - Added class verification code
Version 0.25 - Squashed plotting bug
Version 0.24 - Removed Output.cpp
Version 0.23 - Removed number_of_founders from calc_allele_spectrum
Version 0.22 - Added save and load functions
Version 0.21 - Changed random-seed management
Version 0.20 - Removed superfluous code
Version 0.19 - Removed number_of_founders from Fst and LD code
Version 0.18 - Start of tracking changes

Author(s)

Thijs Janzen Maintainer: (thijsjanzen@gmail.com)

References

Janzen, T., Diaz, F. (2020) Individual-based simulations of genome evolution with ancestry: the
GenomeAdmixR R package. bioRxiv 2020.10.19.343491; doi: https://doi.org/10.1101/2020.10.19.343491

ancestry_module 5

ancestry_module Creates a module to start simulations tracking local ancestry

Description

Module to perform simulations based on local ancestry

Usage

ancestry_module(
input_population = NA,
number_of_founders = 2,
initial_frequencies = NA,
morgan = 1,
markers = NA,
track_junctions = FALSE

)

Arguments

input_population

Potential earlier simulated population used as starting point for the simulation.
If not provided by the user, the simulation starts from scratch.

number_of_founders

Number of unique ancestors / ancestries to be tracked in the simulation

initial_frequencies

A vector describing the initial frequency of each ancestor / ancestry. By default,
equal frequencies are assumed. If a vector not summing to 1 is provided, the
vector is normalized.

morgan Length of the genomic stretch simulated, expressed in Morgan (e.g. the number
of crossovers during meiosis)

markers A vector of locations of markers, with the location in Morgan. Ancestry at these
marker positions is tracked for every generation.

track_junctions

Tracks the average number of junctions over time if TRUE

Value

list with type = "Ancestry". Can be used in simulate_admixture.

6 calculate_allele_frequencies

calculate_allele_frequencies

Calculate allele frequencies

Description

Calculate for a number of regularly spaced markers the relative frequency of each ancestor in the
population.

Usage

calculate_allele_frequencies(
source_pop,
locations = seq(0, 1, length.out = 100),
progress_bar = FALSE

)

Arguments

source_pop Population for which to estimate allele frequencies

locations A vector indicating the locations (in Morgan) where to calculate the allele fre-
quencies.

progress_bar Displays a progress_bar if TRUE. Default value is TRUE

Details

Markers are equidistantly spaced, with a distance of step_size in between them.

Value

A tibble containing the allele frequencies

Examples

number_founders = 20
wildpop = simulate_admixture(

module = ancestry_module(number_of_founders = 20, morgan = 1),
pop_size = 1000,
total_runtime = 10,
num_threads = 1)

freq_output <- calculate_allele_frequencies(wildpop,
progress_bar = TRUE)

require(ggplot2)
ggplot(freq_output, aes(x=location, y = frequency,

col = as.factor(ancestor))) +
geom_line()

calculate_average_ld 7

calculate_average_ld Calculates the ld between two alleles

Description

calculate the average ld between two loci

Usage

calculate_average_ld(alleles_pos_1, alleles_pos_2)

Arguments

alleles_pos_1 alleles at locus 1

alleles_pos_2 alleles at locus 2

Value

a list with two entries: LD and r_squared

calculate_dist_junctions

collect the full distribution of junctions in the population

Description

calculates the distribution of junctions across the population

Usage

calculate_dist_junctions(pop)

Arguments

pop object of the class ’population’

Value

vector with two entries per individual, each indicating the number of junctions in the respective
chromosomes

8 calculate_fst

calculate_fst Calculate FST

Description

The FST value between two populations is calculated, given a number of markers. Markers are su-
perimposed upon the (known) ancestry along the chromosome for all sampled individuals. Markers
can be chosen to be regularly spaced, or randomly distributed.

Usage

calculate_fst(
pop1,
pop2,
sampled_individuals = 10,
number_of_markers = 100,
random_markers = FALSE

)

Arguments

pop1 Population object

pop2 Population object
sampled_individuals

Number of individuals to base the FST upon. Individuals are randomly drawn
from each population, a lower number speeds up calculations.

number_of_markers

Number of markers along the chromosome used to calculate FST metrics.

random_markers If TRUE, markers are randomly spaced along the chromosome, if FALSE, mark-
ers are equidistantly spaced along the chromosome.

Details

Uses the function wc from the package hierfstat to calculate the FST. The function wc computes
the Weir and Cockerham F statistic.

Value

FST value

Examples

two_populations <- simulate_admixture(
module = ancestry_module(),
migration = migration_settings(migration_rate = 0.01,

population_size = c(100, 100)))

calculate_heterozygosity 9

FST <- calculate_fst(pop1 = two_populations$population_1,
pop2 = two_populations$population_2,
sampled_individuals = 10,
number_of_markers = 100,
random_markers = TRUE)

calculate_heterozygosity

Calculate heterozygosity

Description

Calculate the average population level heterozygosity

Usage

calculate_heterozygosity(source_pop, locations, progress_bar = FALSE)

Arguments

source_pop Population for which to estimate allele frequencies, or a list of individuals for
which to calculate average heterozygosity

locations A vector indicating the locations (in Morgan) of markers for which to calculate
the heterozygosity

progress_bar Displays a progress_bar if TRUE. Default value is TRUE

Value

A tibble containing the heterozygosities

calculate_ld Calculate linkage disequilibrium statistics This function calculates
two matrices, once containing all pairwise linkage disequilibrium (ld)
values, and one matrix containing all pairwise r statistics

Description

Calculate linkage disequilibrium statistics This function calculates two matrices, once containing
all pairwise linkage disequilibrium (ld) values, and one matrix containing all pairwise r statistics

Usage

calculate_ld(pop, sampled_individuals = 10, markers = NA, verbose = FALSE)

10 calculate_marker_frequency

Arguments

pop focal population
sampled_individuals

Number of individuals randomly sampled to calculate the LD matrices

markers vector of markers. If a single number is used, that number of markers is ran-
domly placed along the genome.

verbose display verbose output, default is FALSE.

Value

An object containing two items:

ld_matrix Pairwise ld statistics for all markers

rsq_matrix Pairwise rsq statistics for all markers

Examples

wildpop = simulate_admixture(
module = ancestry_module(number_of_founders = 10, morgan = 1),
pop_size = 1000,
total_runtime = 10)

ld_results <- calculate_ld(pop = wildpop,
markers = 10)

plot(ld_results$ld_matrix~ld_results$dist_matrix,
pch = 16,
xlab="Distance between markers",
ylab = "Linkage Disequilibrium")

calculate_marker_frequency

Calculate allele frequencies at a specific marker location

Description

Calculate the relative frequency of each ancestor in the population at a specific marker location

Usage

calculate_marker_frequency(pop, location)

Arguments

pop Population for which to estimate allele frequencies at the given marker

location A vector or scalar of location(s) along the chromosome for which allele frequen-
cies are to be calculated. Locations are in Morgan.

combine_input_data 11

Value

A tibble containing the frequency of each present ancestor at the provided location. Ancestors with
frequency = 0 are dropped out of the table. The tibble contains three columns: location, ancestor
and frequency.

Examples

wildpop = simulate_admixture(
module = ancestry_module(number_of_founders = 20, morgan = 1),
pop_size = 1000,
total_runtime = 10)

avg_frequencies <- calculate_marker_frequency(pop = wildpop,
location = 0.5)

frequencies <-
calculate_marker_frequency(pop = wildpop,

location = seq(0.4, 0.5, by = 0.01))
require(ggplot2)
ggplot(frequencies, aes(x = location, y = frequency, col = ancestor)) +

geom_step()

combine_input_data combine sequence data that was previously read from file into a popu-
lation

Description

Create data in a format that can be used by GenomeAdmixR, entries are sampled randomly from
each input data set, with replacement. Probability of sampling from each input data set is driven by
the input frequencies, and total number of individuals sampled is driven by pop_size.

Usage

combine_input_data(input_data_list, frequencies = NA, pop_size)

Arguments

input_data_list

list where each entry is the result of create_input_data

frequencies frequency of each entry in the list in the starting population

pop_size intended population size

Value

the input data entries are combined to one single population that can be used to seed simulate_admixture_data.
Output is identical to create_input_data

12 create_iso_female

create_artificial_genomeadmixr_data

function to generate artificial genomeadmixr_data

Description

function to generate artificial genomeadmixr_data

Usage

create_artificial_genomeadmixr_data(
number_of_individuals,
marker_locations,
used_nucleotides = 1:4,
nucleotide_frequencies = NA

)

Arguments

number_of_individuals

number of individuals
marker_locations

location of markers, either in bp or Morgan

used_nucleotides

subset or full set of [1/2/3/4] (reflecting a/c/t/g)

nucleotide_frequencies

frequencies of the used nucleotides, if not provided, equal frequencies are as-
sumed.

Value

genomeadmixr_data object ready for simulate_admixture_data

create_iso_female function to simulate creation of an isofemale line

Description

create_isofemale simulates the creation of an isofemale line through extreme inbreeding.

dgrp2.3R.5k.data 13

Usage

create_iso_female(
module = ancestry_module(),
n = 1,
inbreeding_pop_size = 100,
run_time = 2000,
num_threads = 1,
verbose = FALSE

)

Arguments

module Source population from which isofemales are generated

n Number of isofemales to be generated
inbreeding_pop_size

Population size of the population used to generate homozygous individuals

run_time Maximum runtime used for inbreeding

num_threads number of threads. Default is 1. Set to -1 to use all available threads

verbose Displays verbose output if TRUE. Default value is FALSE

Details

To create an isofemale, two individuals are randomly picked from the source population. Using
these two individuals, a new population is seeded, of size inbreeding_pop_size. Then, this popu-
lation is allowed to inbreed until either run_time is reached, or until all individuals are homozygous
and genetically identical, whatever happens first.

Value

A list of length n, where each entry is a fully homozygous isofemale.

dgrp2.3R.5k.data A subset of sequencing data from the Drosophila Genetics Reference
Panel

Description

This data set contains sequences from the 3R chromosome. Included are 4603 SNPs with at least
0.05 minor allele frequency, sequenced across 410 isofemale lines. Sequences were downloaded
from <http://dgrp2.gnets.ncsu.edu/data.html>.

Usage

data("dgrp2.3R.5k.data")

14 iso_female_ancestry

Format

genomeadmixr_data object

References

Mackay, T., Richards, S., Stone, E. et al. The Drosophila melanogaster Genetic Reference Panel.
Nature 482, 173–178 (2012). <https://doi.org/10.1038/nature10811>

Examples

data("dgrp2.3R.5k.data")
simulate_admixture(

module = sequence_module(molecular_data = dgrp2.3R.5k.data),
pop_size = 100,
total_runtime = 10)

iso_female_ancestry Create isofemale

Description

Creates isofemale individuals, given a population

Usage

iso_female_ancestry(
source_pop = NA,
n = 1,
inbreeding_pop_size = 100,
run_time = 2000,
morgan = 1,
num_threads = 1,
verbose = FALSE

)

Arguments

source_pop Source population from which isofemales are generated

n Number of isofemales to be generated
inbreeding_pop_size

Population size of the population used to generate homozygous individuals

run_time Maximum runtime used for inbreeding

morgan Size of the chromosome in Morgan (e.g. the number of crossovers during meio-
sis)

num_threads number of threads. Default is 1. Set to -1 to use all available threads

verbose Displays verbose output if TRUE. Default value is FALSE

iso_female_sequence 15

Details

To create an isofemale, two individuals are randomly picked from the source population. Using
these two individuals, a new population is seeded, of size inbreeding_pop_size. Then, this popu-
lation is allowed to inbreed until either run_time is reached, or until all individuals are homozygous
and genetically identical, whatever happens first.

Value

A list of length n, where each entry is a fully homozygous isofemale.

iso_female_sequence Create isofemale

Description

Creates isofemale individuals, given a population

Usage

iso_female_sequence(
input_data = NA,
n = 1,
inbreeding_pop_size = 100,
run_time = 2000,
morgan = 1,
recombination_rate = NA,
num_threads = 1,
verbose = FALSE

)

Arguments

input_data Source population from which isofemales are generated

n Number of isofemales to be generated
inbreeding_pop_size

Population size of the population used to generate homozygous individuals

run_time Maximum runtime used for inbreeding

morgan Size of the chromosome in Morgan (e.g. the number of crossovers during meio-
sis)

recombination_rate

rate in cM / Mbp, used to map recombination to the markers. If the recombi-
nation_rate is not set, the value for Morgan is used, assuming that the markers
included span an entire chromosome.

num_threads number of threads. Default is 1. Set to -1 to use all available threads

verbose Displays verbose output if TRUE. Default value is FALSE

16 load_population

Details

To create an isofemale, two individuals are randomly picked from the source population. Using
these two individuals, a new population is seeded, of size inbreeding_pop_size. Then, this popu-
lation is allowed to inbreed until either run_time is reached, or until all individuals are homozygous
and genetically identical, whatever happens first.

Value

A list of length n, where each entry is a fully homozygous isofemale.

load_population Load a population from file

Description

Loads a population that has previously been written to file.

Usage

load_population(file_name)

Arguments

file_name Name of the file to save the population

Details

This function is a wrapper for readRDS.

Value

A population object

See Also

save_population

migration_settings 17

migration_settings Function to manage settings associated with migration

Description

creates a list with settings associated with migration.

Usage

migration_settings(
migration_rate = NA,
stop_at_critical_fst = FALSE,
critical_fst = NA,
population_size = c(100, 100),
initial_frequencies = list(c(1, 0), c(0, 1)),
generations_between_update = 10,
sampled_individuals = 10,
number_of_markers = 100,
random_markers = TRUE

)

Arguments

migration_rate Rate of migration between the two populations. Migration is implemented such
that with probability m (migration rate) one of the two parents of a new offspring
is from the other population, with probability 1-m both parents are of the focal
population.

stop_at_critical_fst

option to stop at a critical FST value , default is FALSE
critical_fst the critical fst value to stop, if stop_simulation_at_critical_fst is TRUE
population_size

vector of population sizes, one size for each population
initial_frequencies

A list describing the initial frequency of each ancestor in each population. Each
entry in the list contains a vector with the frequencies for all ancestor. The length
of the vector indicates the number of unique ancestors. If a vector not summing
to 1 is provided, the vector is normalized.

generations_between_update

The number of generations after which the simulation has to check again whether
the critical Fst value is exceeded

sampled_individuals

Number of individuals to be sampled at random from the population to estimate
Fst

number_of_markers

Number of markers to be used to estimate Fst
random_markers Are the markers to estimate Fst randomly distributed, or regularly distributed?

Default is TRUE.

18 plot.individual

Value

list with migration associated settings. To be used to pass on migration settings to simulate_admixture.

plink_to_genomeadmixr_data

function to convert plink style (ped/map) data to genome_admixr_data

Description

function to convert plink style (ped/map) data to genome_admixr_data

Usage

plink_to_genomeadmixr_data(
ped_data,
map_data,
chosen_chromosome,
verbose = FALSE

)

Arguments

ped_data result of read.table(ped_file, header = F)

map_data result of read.table(map_file, header = F)
chosen_chromosome

chromosome of choice

verbose verbose output

Value

genomeadmixr_data object ready for simulate_admixture_data

plot.individual plot the genome of an individual

Description

visualise ancestry blocks on both chromosomes

Usage

S3 method for class 'individual'
plot(x, cols = NA, ...)

plot_chromosome 19

Arguments

x object of type individual

cols colors for the different ancestors

... other arguments

Value

No return value

plot_chromosome plots a chromosome

Description

This function plots a chromosome in the range [xmin, xmax]. Colors indicate different ancestry.

Usage

plot_chromosome(chrom, xmin = 0, xmax = 1)

Arguments

chrom object of type chromosome, typically a table with two columns. The first column
indicates the start of an ancestry block (location in Morgan), the second column
indicates the ancestry type.

xmin minimum value of the range, default = 0.

xmax maximum value of the range, default = 1.

Value

No return value

Examples

wildpop = simulate_admixture(
module = ancestry_module(number_of_founders = 10, morgan = 1),
pop_size = 1000,
total_runtime = 10)

isofemale <- create_iso_female(
module = ancestry_module(input_population = wildpop,

morgan = 1),
n = 1,
inbreeding_pop_size = 100,
run_time = 10)

plot_chromosome(chrom = isofemale[[1]]$chromosome1)

20 plot_difference_frequencies

and a detail of the chromosome:
plot_chromosome(chrom = isofemale[[1]]$chromosome1,

xmin = 0.4,
xmax = 0.6)

plot_difference_frequencies

Plot the change in frequency between the start and end of a simulation

Description

This function plots the change in frequency of one or multiple ancestors after performing a simula-
tion.

Usage

plot_difference_frequencies(
results,
picked_ancestor = "ALL",
picked_population = 1

)

Arguments

results An object which is the result of simulate_admixture being a list with four
properties: population, frequencies, initial_frequencies and final frequencies

picked_ancestor

Default is "ALL", where different colors indicate different ancestors. Alterna-
tively, for clarity, the user can specify a specific ancestral allele, and only that
allele is plotted

picked_population

If multiple populations were simulated (in the case of simulate_admixture_migration),
which population should be plotted? Default is population_1.

Value

a ggplot2 object

Examples

s <- 0.1
select_matrix <- matrix(nrow = 1, ncol = 5)
select_matrix[1,] <- c(0.25, 1.0, 1 + 0.5 * s, 1 + s, 0)

markers <- seq(from = 0.2, to = 0.3, length.out = 100)

selected_pop <- simulate_admixture(
module = ancestry_module(number_of_founders = 10,

plot_dist_junctions 21

morgan = 1,
markers = markers),

pop_size = 1000,
total_runtime = 11,
select_matrix = select_matrix)

require(ggplot2)
plot_difference_frequencies(results = selected_pop,

picked_ancestor = "ALL")

plot_dist_junctions plot the distribution of junctions

Description

plots the distribution of junctions in the population using base R

Usage

plot_dist_junctions(pop)

Arguments

pop of the class ’population’

Value

No return value

plot_frequencies Plot the frequencies of all ancestors along the genome.

Description

This function plots the frequency of all ancestors after performing a simulation.

Usage

plot_frequencies(
result,
locations = seq(0, 1, length.out = 100),
progress_bar = FALSE

)

22 plot_joyplot_frequencies

Arguments

result An object which is the result of select_population or create_population_selection,
being a list with four properties: population, frequencies, initial_frequencies
and final frequencies

locations A vector indicating the locations (in Morgan) where to calculate the allele fre-
quencies.

progress_bar Displays a progress_bar if TRUE. Default value is FALSE

Value

a ggplot2 object

Examples

pop <- simulate_admixture(
module = ancestry_module(number_of_founders = 4),
pop_size = 1000,
total_runtime = 11)

require(ggplot2)
plot_frequencies(result = pop)

plot_joyplot_frequencies

make a joy plot of the distribution of allele frequencies within a region

Description

This function plots the distribution of allele frequencies within a region over time, making use of a
’joyplot’

Usage

plot_joyplot_frequencies(
frequencies,
time_points,
picked_ancestor = "ALL",
picked_population = 1

)

Arguments

frequencies A tibble containing four columns: time, location, ancestor, frequency.
Typically one of the items returned by create_population_selection or select_population
when the user specifies track_frequency.

time_points A sequence of time points for which the user wants to create the joyplot

plot_over_time 23

picked_ancestor

Default is "ALL", where different colors indicate different ancestors. Alterna-
tively, for clarity, the user can specify a specific ancestral allele, and only that
allele is plotted

picked_population

If multiple populations were simulated (in the case of simulate_admixture_migration),
which population should be plotted? Default is population_1.

Value

a ggplot object

Examples

s <- 0.01
select_matrix <- matrix(nrow = 1, ncol = 5)
select_matrix[1,] <- c(0.25, 1.0, 1 + 0.5 * s, 1 + s, 0)

markers <- seq(from = 0.2, to = 0.3, length.out = 100)

selected_pop <- simulate_admixture(
module = ancestry_module(number_of_founders = 10,

morgan = 1,
markers = markers),

pop_size = 1000,
total_runtime = 11,
select_matrix = select_matrix)

require(ggplot2)
plot_joyplot_frequencies(frequencies = selected_pop$frequencies,

time_points = 0:11,
picked_ancestor = "ALL")

joyplot frequencies returns a ggplot object, so we can
add extra elements:
plot_joyplot_frequencies(frequencies = selected_pop$frequencies,

time_points = 0:11,
picked_ancestor = "ALL") +

ggplot2::xlab("Location") +
ggplot2::ylab("Generations")

plot_over_time Plot the frequencies of all ancestors over time

Description

This function plots the frequency of all ancestors over time at a specific location on the chromosome,
after performing a simulation.

24 plot_start_end

Usage

plot_over_time(frequencies, focal_location)

Arguments

frequencies A tibble containing four columns: time, location, ancestor, frequency. A
fifth colum population can be included if the tibble is the result of simulate_admixture_migration.

focal_location Location (in Morgan) where to plot the allele frequencies.

Value

a ggplot2 object

Examples

pop <- simulate_admixture(
module = ancestry_module(number_of_founders = 10,

markers = 0.5),
pop_size = 1000,
total_runtime = 11)

require(ggplot2)
plot_over_time(frequencies = pop$frequencies,

focal_location = 0.5)

plot_start_end Plot both the starting frequencies and the final frequencies in one plot

Description

This function plots the distribution of both the starting and the final frequencies in one plot

Usage

plot_start_end(results, picked_ancestor = "ALL", picked_population = 1)

Arguments

results An object which is the result of simulate_admixture, being a list with four
properties: population, frequencies, initial_frequencies and final frequencies

picked_ancestor

Default is "ALL", where different colors indicate different ancestors. Alterna-
tively, for clarity, the user can specify a specific ancestral allele, and only that
allele is plotted

picked_population

If multiple populations were simulated (in the case of simulate_admixture_migration),
which population should be plotted? Default is population_1.

print.genomeadmixr_data 25

Value

a ggplot object

Examples

markers <- seq(from = 0.2, to = 0.3, length.out = 100)

pop <- simulate_admixture(
module = ancestry_module(number_of_founders = 3,

morgan = 1,
markers = markers),

pop_size = 1000,
total_runtime = 11)

require(ggplot2)
plot_start_end(pop,

picked_ancestor = "ALL")
plot_start_end(pop,

picked_ancestor = 1)

print.genomeadmixr_data

print an individual to the console

Description

prints an object of class genomeadmixr_data to the console

Usage

S3 method for class 'genomeadmixr_data'
print(x, ...)

Arguments

x individual

... other arguments

Value

No return value

26 print.population

print.individual print an individual to the console

Description

prints an object of class individual to the console

Usage

S3 method for class 'individual'
print(x, ...)

Arguments

x individual

... other arguments

Value

No return value

print.population print a population object

Description

prints the contents of a population nicely

Usage

S3 method for class 'population'
print(x, ...)

Arguments

x input population

... other arguments

Value

No return value

read_input_data 27

read_input_data read sequence data from file to be used in simulation

Description

Create data in a format that can be used by GenomeAdmixR

Usage

read_input_data(
file_names,
type,
chosen_chromosome,
number_of_snps = NA,
random_snps = TRUE,
verbose = FALSE

)

Arguments

file_names names of input files

type type of data, options are ’ped’ and ’vcf’

chosen_chromosome

GenomeAdmixR simulates only a single chromosome.

number_of_snps number of snps to be loaded from file, default is to load all snps

random_snps if a subset of all snps has to be taken, should these be sampled sequentially (e.g.
the first 100 snps) or randomly (100 randomly sampled snps) (examples are for
’number_of_snps’ = 100).

verbose give verbose output

Value

list with two properties: genomes a matrix with the sequence translated to numerics, such that [actg]
corresponds to [1234], and missing data is represented with "-". Rows in the matrix correspond to
chromosomes, and columns represent bases. Two consecutive rows represent an individual, such
that rows 1-2 are individual, rows 3-4 are one individual etc. markers corresponds to the locations
of the markers (in bp) on the chosen chromosome.

28 sequence_module

save_population Save a population to file

Description

Saves a population to file for later use

Usage

save_population(population, file_name, compression = TRUE)

Arguments

population Object of class population

file_name Name of the file to save the population

compression By default, the population is compressed to reduce file size. See for more infor-
mation saveRDS

Details

This function functions as a wrapper for the base function saveRDS.

Value

No return value

sequence_module create sequence module

Description

creates a sequence module, which contains all relevant information in order to perform a simulation
based on sequence data.

Usage

sequence_module(
molecular_data = NA,
initial_frequencies = NA,
morgan = 1,
recombination_rate = NA,
markers = NA,
mutation_rate = 0,
substitution_matrix = matrix(1/4, 4, 4)

)

simulate_admixture 29

Arguments

molecular_data Genomic data used as input, should be of type genomeadmixr_data. Either a
single dataset is provided, or a list of multiple genomeadmixr_data objects.

initial_frequencies

A vector describing the initial contribution of each provided input data set to the
starting hybrid swarm. By default, equal frequencies are assumed. If a vector
not summing to 1 is provided, the vector is normalized.

morgan Length of the molecular sequence in Morgan (e.g. the number of crossovers
during meiosis), alternatively, the recombination rate can be used, see below.

recombination_rate

rate in cM / Mbp, used to map recombination to the markers. If the recombi-
nation_rate is not set, the value for Morgan is used, assuming that the markers
included span an entire chromosome.

markers A vector of locations of markers, these markers are tracked for every generation.

mutation_rate the per base probability of mutation. Default is 0.
substitution_matrix

a 4x4 matrix representing the probability of mutating to another base (where
[1/2/3/4] = [a/c/t/g]), conditional on the event of a mutation happening. Default
is the JC69 matrix, with equal probabilities for all transitions / transversions.

Value

sequence module object, used as starting point for simulate_admixture.

simulate_admixture Individual based simulation of the breakdown of contiguous ancestry
blocks.

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selec-
tion. Simulations can be started from scratch, or from a predefined input population.

Usage

simulate_admixture(
module = ancestry_module(),
pop_size = 100,
total_runtime = 100,
migration = migration_settings(),
select_matrix = NA,
multiplicative_selection = TRUE,
verbose = FALSE,
num_threads = 1

)

30 simulate_admixture

Arguments

module Chosen module to simulate, either created with module_ancestry or module_sequence.
pop_size The number of individuals in the population. If the number is larger than the

number of individuals in the input population (if provided), additional individu-
als are sampled randomly from the input population to reach the intended size.

total_runtime Number of generations
migration settings associated with migration, should be created with migration_settings

select_matrix Selection matrix indicating the markers which are under selection. If not pro-
vided by the user, the simulation proceeds neutrally. If provided, each row in the
matrix should contain five entries: location location of the marker under selec-
tion (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA)
fitness of homozygote mutant (AA) Ancestral type that represents the
mutant allele A

multiplicative_selection

Default: TRUE. If TRUE, fitness is calculated for multiple markers by multi-
plying fitness values for each marker. If FALSE, fitness is calculated by adding
fitness values for each marker.

verbose Verbose output if TRUE. Default value is FALSE
num_threads number of threads. Default is 1. Set to -1 to use all available threads

Value

A list with: population a population object, and three tibbles with allele frequencies (only contain
values of a vector was provided to the argument markers: frequencies , initial_frequencies
and final_frequencies. Each tibble contains four columns, time, location, ancestor and
frequency, which indicates the number of generations, the location along the chromosome of the
marker, the ancestral allele at that location in that generation, and finally, the frequency of that
allele.

Examples

local ancestry simulation
two_populations <- simulate_admixture(

module = ancestry_module(number_of_founders = 3,
morgan = 0.8),

migration = migration_settings(
migration_rate = 0.01,
population_size = c(100, 100)),

total_runtime = 10)
sequence simulation
data(dgrp2.3R.5k.data)

sequence_population <-
simulate_admixture(

module = sequence_module(molecular_data = dgrp2.3R.5k.data,
recombination_rate = 0.2,
mutation_rate = 1e-5),

pop_size = 1000,
total_runtime = 10)

simulate_ancestry 31

simulate_ancestry Individual based simulation of the breakdown of contiguous ancestry
blocks.

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selec-
tion. Simulations can be started from scratch, or from a predefined input population.

Usage

simulate_ancestry(
input_population = NA,
pop_size = NA,
number_of_founders = 2,
initial_frequencies = NA,
total_runtime = 100,
morgan = 1,
num_threads = 1,
select_matrix = NA,
markers = NA,
verbose = FALSE,
track_junctions = FALSE,
multiplicative_selection = TRUE

)

Arguments

input_population

Potential earlier simulated population used as starting point for the simulation.
If not provided by the user, the simulation starts from scratch.

pop_size The number of individuals in the population. If the number is larger than the
number of individuals in the input population (if provided), additional individu-
als are sampled randomly from the input population to reach the intended size.

number_of_founders

Number of unique ancestors
initial_frequencies

A vector describing the initial frequency of each ancestor. By default, equal
frequencies are assumed. If a vector not summing to 1 is provided, the vector is
normalized.

total_runtime Number of generations

morgan Length of the chromosome in Morgan (e.g. the number of crossovers during
meiosis)

num_threads number of threads. Default is 1. Set to -1 to use all available threads

32 simulate_ancestry_migration

select_matrix Selection matrix indicating the markers which are under selection. If not pro-
vided by the user, the simulation proceeds neutrally. If provided, each row in the
matrix should contain five entries: location location of the marker under selec-
tion (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA)
fitness of homozygote mutant (AA) Ancestral type that represents the
mutant allele A

markers A vector of locations of markers (relative locations in [0, 1]). If a vector is
provided, ancestry at these marker positions is tracked for every generation.

verbose Verbose output if TRUE. Default value is FALSE
track_junctions

Track the average number of junctions over time if TRUE
multiplicative_selection

Default: TRUE. If TRUE, fitness is calculated for multiple markers by multi-
plying fitness values for each marker. If FALSE, fitness is calculated by adding
fitness values for each marker.

Value

A list with: population a population object, and three tibbles with allele frequencies (only contain
values of a vector was provided to the argument markers: frequencies , initial_frequencies
and final_frequencies. Each tibble contains four columns, time, location, ancestor and
frequency, which indicates the number of generations, the location along the chromosome of the
marker, the ancestral allele at that location in that generation, and finally, the frequency of that
allele.

simulate_ancestry_migration

Individual based simulation of the breakdown of contiguous ancestry
blocks in two populations linked by migration

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selec-
tion. Simulations can be started from scratch, or from a predefined input population. Two popula-
tions are simulated, connected by migration

Usage

simulate_ancestry_migration(
input_population_1 = NA,
input_population_2 = NA,
pop_size = c(100, 100),
initial_frequencies = list(c(1, 0), c(0, 1)),
total_runtime = 100,
morgan = 1,
num_threads = 1,

simulate_ancestry_migration 33

select_matrix = NA,
markers = NA,
verbose = FALSE,
track_junctions = FALSE,
multiplicative_selection = TRUE,
migration_rate = 0,
stop_at_critical_fst = FALSE,
critical_fst = 0.1,
generations_between_update = 100,
sampled_individuals = 10,
number_of_markers = 100,
random_markers = TRUE

)

Arguments

input_population_1

Potential earlier simulated population used as starting point for the simulation.
If not provided by the user, the simulation starts from scratch.

input_population_2

Potential earlier simulated population used as starting point for the simulation.
If not provided by the user, the simulation starts from scratch.

pop_size Vector containing the number of individuals in both populations.
initial_frequencies

A list describing the initial frequency of each ancestor in each population. Each
entry in the list contains a vector with the frequencies for all ancestor. The length
of the vector indicates the number of unique ancestors. If a vector not summing
to 1 is provided, the vector is normalized.

total_runtime Number of generations
morgan Length of the chromosome in Morgan (e.g. the number of crossovers during

meiosis)
num_threads number of threads. Default is 1. Set to -1 to use all available threads
select_matrix Selection matrix indicating the markers which are under selection. If not pro-

vided by the user, the simulation proceeds neutrally. If provided, each row in the
matrix should contain five entries: location location of the marker under selec-
tion (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA)
fitness of homozygote mutant (AA) Ancestral type that representes the
mutant allele A

markers A vector of locations of markers (relative locations in [0, 1]). If a vector is
provided, ancestry at these marker positions is tracked for every generation.

verbose Verbose output if TRUE. Default value is FALSE
track_junctions

Track the average number of junctions over time if TRUE
multiplicative_selection

Default: TRUE. If TRUE, fitness is calculated for multiple markers by multi-
plying fitness values for each marker. If FALSE, fitness is calculated by adding
fitness values for each marker.

34 simulate_sequence

migration_rate Rate of migration between the two populations. Migration is implemented such
that with probability m (migration rate) one of the two parents of a new offspring
is from the other population, with probability 1-m both parents are of the focal
population.

stop_at_critical_fst

option to stop at a critical FST value , default is FALSE

critical_fst the critical fst value to stop, if stop_simulation_at_critical_fst is TRUE
generations_between_update

The number of generations after which the simulation has to check again whether
the critical Fst value is exceeded

sampled_individuals

Number of individuals to be sampled at random from the population to estimate
Fst

number_of_markers

Number of markers to be used to estimate Fst

random_markers Are the markers to estimate Fst randomly distributed, or regularly distributed?
Default is TRUE.

Value

A list with: population_1, population_2 two population objects, and three tibbles with allele
frequencies (only contain values of a vector was provided to the argument markers: frequencies,
initial_frequencies and final_frequencies. Each tibble contains five columns, time, location,
ancestor, frequency and population, which indicates the number of generations, the location
along the chromosome of the marker, the ancestral allele at that location in that generation, the fre-
quency of that allele and the population in which it was recorded (1 or 2). If a critical fst value was
used to terminate the simulation, and object FST with the final FST estimate is returned as well.

simulate_sequence Individual based simulation of the breakdown of contiguous ancestry
blocks.

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selec-
tion. Simulations can be started from scratch, or from a predefined input population.

Usage

simulate_sequence(
input_data = NA,
pop_size = NA,
initial_frequencies = NA,
total_runtime = 100,
morgan = 1,
recombination_rate = NA,

simulate_sequence 35

num_threads = 1,
select_matrix = NA,
markers = NA,
verbose = FALSE,
multiplicative_selection = TRUE,
mutation_rate = 0,
substitution_matrix = matrix(1/4, 4, 4)

)

Arguments

input_data Genomic data used as input, should be of type genomeadmixr_data. Either a
single dataset is provided, or a list of multiple genomeadmixr_data objects.

pop_size Vector containing the number of individuals in both populations.

initial_frequencies

A vector describing the initial contribution of each provided input data set to the
starting hybrid swarm. By default, equal frequencies are assumed. If a vector
not summing to 1 is provided, the vector is normalized.

total_runtime Number of generations

morgan Length of the chromosome in Morgan (e.g. the number of crossovers during
meiosis)

recombination_rate

rate in cM / Mbp, used to map recombination to the markers. If the recombi-
nation_rate is not set, the value for Morgan is used, assuming that the markers
included span an entire chromosome.

num_threads number of threads. Default is 1. Set to -1 to use all available threads

select_matrix Selection matrix indicating the markers which are under selection. If not pro-
vided by the user, the simulation proceeds neutrally. If provided, each row in the
matrix should contain five entries: location location of the marker under selec-
tion (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA)
fitness of homozygote mutant (AA) Ancestral type that represents the
mutant allele A

markers A vector of locations of markers, these markers are tracked for every generation.

verbose Verbose output if TRUE. Default value is FALSE

multiplicative_selection

Default: TRUE. If TRUE, fitness is calculated for multiple markers by multi-
plying fitness values for each marker. If FALSE, fitness is calculated by adding
fitness values for each marker.

mutation_rate the per base probability of mutation. Default is 0.

substitution_matrix

a 4x4 matrix representing the probability of mutating to another base (where
[1/2/3/4] = [a/c/t/g]), conditional on the event of a mutation happening. Default
is the JC69 matrix, with equal probabilities for all transitions / transversions.

36 simulate_sequence_migration

Value

A list with: population a population object, and three tibbles with allele frequencies (only contain
values of a vector was provided to the argument markers: frequencies , initial_frequencies
and final_frequencies. Each tibble contains four columns, time, location, ancestor and
frequency, which indicates the number of generations, the location along the chromosome of the
marker, the ancestral allele at that location in that generation, and finally, the frequency of that
allele.

simulate_sequence_migration

Individual based simulation of the breakdown of contiguous ancestry
blocks in two populations linked by migration

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selec-
tion. Simulations can be started from scratch, or from a predefined input population. Two popula-
tions are simulated, connected by migration

Usage

simulate_sequence_migration(
input_data_population_1 = NA,
input_data_population_2 = NA,
pop_size = c(100, 100),
total_runtime = 100,
morgan = 1,
recombination_rate = NA,
num_threads = 1,
select_matrix = NA,
markers = NA,
verbose = FALSE,
multiplicative_selection = TRUE,
migration_rate = 0,
stop_at_critical_fst = FALSE,
critical_fst = NA,
generations_between_update = 100,
sampled_individuals = 10,
number_of_markers = 100,
random_markers = TRUE,
mutation_rate = 0,
substitution_matrix = matrix(1/4, 4, 4)

)

simulate_sequence_migration 37

Arguments

input_data_population_1

Genomic data used as input, should be created by the function create_input_data
or by the function combine_input_data

input_data_population_2

Genomic data used as input, should be created by thefunction create_input_data
or by the function combine_input_data

pop_size Vector containing the number of individuals in both populations.

total_runtime Number of generations

morgan Length of the chromosome in Morgan (e.g. the number of crossovers during
meiosis)

recombination_rate

rate in cM / Mbp, used to map recombination to the markers. If the recombi-
nation_rate is not set, the value for morgan is used, assuming that the markers
included span an entire chromosome.

num_threads number of threads. Default is 1. Set to -1 to use all available threads

select_matrix Selection matrix indicating the markers which are under selection. If not pro-
vided by the user, the simulation proceeds neutrally. If provided, each row in the
matrix should contain five entries: location location of the marker under selec-
tion (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA)
fitness of homozygote mutant (AA) Ancestral type that representes the
mutant allele A

markers A vector of locations of markers (relative locations in [0, 1]). If a vector is
provided, ancestry at these marker positions is tracked for every generation.

verbose Verbose output if TRUE. Default value is FALSE
multiplicative_selection

Default: TRUE. If TRUE, fitness is calculated for multiple markers by multi-
plying fitness values for each marker. If FALSE, fitness is calculated by adding
fitness values for each marker.

migration_rate Rate of migration between the two populations. Migration is implemented such
that with probability m (migration rate) one of the two parents of a new offspring
is from the other population, with probability 1-m both parents are of the focal
population.

stop_at_critical_fst

option to stop at a critical FST value , default is FALSE

critical_fst the critical fst value to stop, if stop_simulation_at_critical_fst is TRUE
generations_between_update

The number of generations after which the simulation has to check again whether
the critical Fst value is exceeded

sampled_individuals

Number of individuals to be sampled at random from the population to estimate
Fst

number_of_markers

Number of markers to be used to estimate Fst

38 simulation_data_to_genomeadmixr_data

random_markers Are the markers to estimate Fst randomly distributed, or regularly distributed?
Default is TRUE.

mutation_rate the per base probability of mutation. Default is 0.
substitution_matrix

a 4x4 matrix representing the probability of mutating to another base (where
[1/2/3/4] = [a/c/t/g]), conditional on the event of a mutation happening. Default
is the JC69 matrix, with equal probabilities for all transitions / transversions.

Value

A list with: population_1, population_2 two population objects, and three tibbles with allele
frequencies (only contain values of a vector was provided to the argument markers: frequencies,
initial_frequencies and final_frequencies. Each tibble contains five columns, time, location,
ancestor, frequency and population, which indicates the number of generations, the location
along the chromosome of the marker, the ancestral allele at that location in that generation, the fre-
quency of that allele and the population in which it was recorded (1 or 2). If a critical fst value was
used to terminate the simulation, and object FST with the final FST estimate is returned as well.

simulation_data_to_genomeadmixr_data

function to convert ped/map data to genome_admixr_data

Description

function to convert ped/map data to genome_admixr_data

Usage

simulation_data_to_genomeadmixr_data(
simulation_data,
markers = NA,
verbose = FALSE

)

Arguments

simulation_data

result of simulate_admixture

markers vector of locations of markers (in Morgan). If no vector is provided, the function
searches for marker locations in the simulation_data.

verbose provide verbose output (default is FALSE)

Value

genomeadmixr_data object ready for simulate_admixture_data

vcfR_to_genomeadmixr_data 39

vcfR_to_genomeadmixr_data

function to convert a vcfR object to genome_admixr_data

Description

function to convert a vcfR object to genome_admixr_data

Usage

vcfR_to_genomeadmixr_data(
vcfr_object,
chosen_chromosome,
number_of_snps = NA,
random_snps = TRUE,
verbose = FALSE

)

Arguments

vcfr_object result of vcfR::read.vcfR
chosen_chromosome

chromosome of choice

number_of_snps number of snps to be loaded from the vcf file, default is to load all snps

random_snps if a subset of all snps has to be taken, should these be sampled sequentially (e.g.
the first 100 snps) or randomly (100 randomly sampled snps) (examples are for
’number_of_snps’ = 100).

verbose if true, print progress bar

Value

genomeadmixr_data object ready for simulate_admixture_data

write_as_plink function to write simulation output as PLINK style data

Description

function to write simulation output as PLINK style data

40 write_as_plink

Usage

write_as_plink(
input_pop,
marker_locations,
file_name_prefix,
chromosome = 1,
recombination_rate = 1

)

Arguments

input_pop input population, either of class "population" or of class "genomeadmixr_data"
marker_locations

location of markers, in bp
file_name_prefix

prefix of the ped/map files.

chromosome chromosome indication for map file
recombination_rate

recombination rate in cM / kb

Value

No return value

Index

∗ datasets
dgrp2.3R.5k.data, 13

ancestry_module, 5

calculate_allele_frequencies, 6
calculate_average_ld, 7
calculate_dist_junctions, 7
calculate_fst, 8
calculate_heterozygosity, 9
calculate_ld, 9
calculate_marker_frequency, 10
combine_input_data, 11
create_artificial_genomeadmixr_data,

12
create_iso_female, 12

dgrp2.3R.5k.data, 13

GenomeAdmixR (GenomeAdmixR-package), 3
GenomeAdmixR-package, 3

iso_female_ancestry, 14
iso_female_sequence, 15

load_population, 16

migration_settings, 17, 30

plink_to_genomeadmixr_data, 18
plot.individual, 18
plot_chromosome, 19
plot_difference_frequencies, 20
plot_dist_junctions, 21
plot_frequencies, 21
plot_joyplot_frequencies, 22
plot_over_time, 23
plot_start_end, 24
print.genomeadmixr_data, 25
print.individual, 26
print.population, 26

read_input_data, 27

save_population, 16, 28
sequence_module, 28
simulate_admixture, 29
simulate_ancestry, 31
simulate_ancestry_migration, 32
simulate_sequence, 34
simulate_sequence_migration, 36
simulation_data_to_genomeadmixr_data,

38

vcfR_to_genomeadmixr_data, 39

write_as_plink, 39

41

	GenomeAdmixR-package
	ancestry_module
	calculate_allele_frequencies
	calculate_average_ld
	calculate_dist_junctions
	calculate_fst
	calculate_heterozygosity
	calculate_ld
	calculate_marker_frequency
	combine_input_data
	create_artificial_genomeadmixr_data
	create_iso_female
	dgrp2.3R.5k.data
	iso_female_ancestry
	iso_female_sequence
	load_population
	migration_settings
	plink_to_genomeadmixr_data
	plot.individual
	plot_chromosome
	plot_difference_frequencies
	plot_dist_junctions
	plot_frequencies
	plot_joyplot_frequencies
	plot_over_time
	plot_start_end
	print.genomeadmixr_data
	print.individual
	print.population
	read_input_data
	save_population
	sequence_module
	simulate_admixture
	simulate_ancestry
	simulate_ancestry_migration
	simulate_sequence
	simulate_sequence_migration
	simulation_data_to_genomeadmixr_data
	vcfR_to_genomeadmixr_data
	write_as_plink
	Index

